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SUMMARY

In Ma, Wu, Eatock Taylor [Finite element simulation of fully non-linear interaction between vertical
cylinders and steep waves. Part 1: methodology and numerical procedure. International Journal for
Numerical Methods in Fluids 2001], designated Part 1 hereafter, we have developed the methodology and
solution procedure for simulating the three-dimensional interaction between fixed bodies and steep waves
based on a finite element method (FEM). This paper provides extensive numerical results and validation.
The effectiveness of the radiation condition is investigated by comparing the results from short and long
tanks; the accuracy of the computed data is confirmed through comparison with analytical solutions. The
adopted mathematical model is also validated by comparing the obtained numerical results with
experimental data. Various test cases, including non-linear bichromatic and irregular waves and the
interactions between waves and one or two cylinders, are analysed. Copyright © 2001 John Wiley &
Sons, Ltd.

KEY WORDS: finite element method; non-linear interaction; numerical tank; steep waves; vertical
cylinders

1. INTRODUCTION

As described in Part 1 [1], the present analysis uses a time marching technique based on fully
non-linear potential theory and tackles the three-dimensional boundary value problem at each
time step using a finite element method (FEM). The algebraic equations resulting from the
FEM are solved by a conjugate gradient iterative method with a symmetric successive
overrelaxation (SSOR) pre-conditioner, including a carefully selected parameter. A post-pro-
cessor based on the recovery technique is adopted in order to improve the accuracy of the
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finite element solution without increasing the number of elements. A radiation condition is
imposed on the truncated boundary, which is based on the combination of a damping zone
and a Sommerfeld condition.

The present paper gives extensive numerical results and validation. The following sections
start with the optimization of parameter �0 used in the damping zone (see Section 2.2 of
Part 1 for details [1]). The numerical results for both regular and irregular waves with
different amplitudes are then provided. Extensive results are presented for interactions
between steep waves and one or two cylinders. The computed results are compared with
analytical solutions and experimental data for some cases and agreement is found to be
satisfactory.

In the analysis carried out below, d, �d/g and � are used as the basic parameters for
non-dimensionalization. In particular, the following parameters are defined by:

(x, y, z, �, L, B, a, R0, �)� (x, y, z, �, L, B, a, R0, �)d, t��
�d
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, ���
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k
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,

F�F�gd3, M�M�gd4 (1)

Most of these definitions can be found in Part 1 (figure 1) and Equations (1), (7), (12), (13)
and (22). In addition, a will be used as the amplitude of wave-maker motion and R0 is the
radius of the cylinder placed in the tank.

2. WAVES GENERATED IN THE NUMERICAL TANK

The numerical simulation of wave propagation in a tank without any cylinder is investi-
gated first. The generated waves may be monochromatic, bichromatic or irregular. Figure 1
shows an illustration of a coarse mesh used at the start of a typical calculation.

Figure 1. Typical initial coarse mesh for the wave-maker problem.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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2.1. Optimization of the parameter �0 in the damping zone

Section 2.2 of Part 1 outlines the procedure through which the radiation condition is imposed.
It is done by a combination of the Sommerfeld condition and a damping zone. The damping
zone is applied over a length Ldm specified in that section. Here the way to choose the other
parameter �0 in the damping zone will be discussed. This parameter is optimized using
numerical tests as follows. In these tests, the efficiency of absorption is measured by an
absorption coefficient, Ca, defined by

Ca=1−
�Ar

A0

(2)

where A0 is the amplitude of the incident wave without reflection and �Ar is the amplitude of
the reflected wave. If there is no reflection, i.e. �Ar=0, then Ca=1; on the other hand if the
wave is completely reflected, Ca=0.

Neither A0 nor �Ar is available prior to the simulation and both have to the determined
numerically. �Ar is estimated from �Ar= �A0−Ar�, where Ar is the total amplitude of the wave
including the reflection. Ar is obtained from the envelope of the wave history recorded at point
x= (L/2)− (Ldm+0.2�), which is situated just upstream of the left edge of the damping zone.
A0 is approximated by the amplitude of the wave generated under the same conditions but in
a longer tank, recorded at the same point as that for Ar.

In order to find the optimum value of �0, waves are generated by the piston wave-maker
undergoing the following motion:

S(�)= −a cos(��) (3)

U(�)=a� sin(��) (4)

where S(�) is the displacement of the wave-maker, a is its amplitude and U(�) is its velocity.
The frequency � of the motion is taken in the range 0.5–3.0. In the shorter tank, the initial
distance between the wave-maker and the left edge of the damping zone is set at about 4�, and
this distance in the longer tank is about 12�. The calculation is made over about 14 periods.
The corresponding amplitudes of the wave-maker are specified in such a way that all the
resulting waves have steepness �=H/��0.005, where H is the wave height.

Figure 2(a) shows the absorption coefficient against frequency � and parameter �0. For each
frequency, one can find a maximum absorption coefficient from this figure, as shown in Figure
2(b). The values of �0 corresponding to each of the maximum absorption coefficients are then
determined for every frequency. These values are plotted against the frequency as stars in
Figure 3. The discrete numerical values can be fitted by a third-order polynomial

�0=0.0496�3−0.1751�2+0.2352�−0.0689 (5)

which is illustrated as the solid line in Figure 3. This equation provides a convenient way of
implementing the damping zone and allows us to set up the radiation condition in the
computer program by choosing parameter �0 automatically once the frequency is specified.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 2. Absorption coefficient for different � and �0.

Figure 3. Optimum �0 against �.

As shown in Figure 2(b), the absorption coefficient can be very close to unity if parameter
�0 is determined by Equation (5). However, Equation (5) has been obtained by numerical tests
on waves with low steepness. In order to check if it is suitable for waves of greater steepness,
cases with various values of � are also simulated. For each of these cases, the frequency is kept
constant. Figure 4 plots the obtained absorption coefficients. It can be seen that the absorbing
efficiency is still very good even when the wave steepness is 0.08 (under ideal conditions, the
maximum steepness for a Stokes wave is about 0.14, but in some numerical simulation the
maximum achievable steepness may be reduced to 0.1 [2]). The efficiency does, however,
decrease slightly with increase in the steepness.

2.2. Comparison with the analytical solution

For a wave having very small steepness, a linearized analytical solution may be found (e.g.
Reference [3]). This solution can be used as a check on the numerical method. For a particular

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 4. Absorption coefficient against wave steepness (�0 evaluated by Equation (5)).

Figure 5. Comparison of the wave history with the analytical solution at x�3.74 for the case with
�=1.45 and a=0.0041.

case in a tank having the length of L�15, the numerical and analytical results for the time
history of wave elevation at x�3.74 are shown in Figure 5. In Figure 6 the profiles at two
instants are plotted for the same case. In Figure 6(a) the steady state wave has not yet reached
the damping zone, whereas it has in Figure 6(b). The figures show that the numerical results
are in very good agreement with the corresponding analytical solutions; although the difference
in the profiles is slightly greater within the damping zone, as is expected. The cases with other
frequencies and amplitudes used in the damping zone investigation have also been compared
with the analytical solution. The results for all of them show a similar agreement with the
analytical solution to that seen in these two figures.

2.3. Wa�es with larger amplitudes

Waves with various frequencies and larger amplitudes were also simulated. One example of a
time history is shown in Figure 7. It can be seen from these plots that the waves with larger
amplitudes have flatter troughs and sharper crests. In addition, it is observed that the waves
with larger amplitudes travel faster and have longer wavelengths than those with smaller
amplitudes. The same phenomenon has also been noted in other cases with different frequen-
cies. This phenomenon for the transient wave is similar to the so-called amplitude dispersion
of Stokes waves, as discussed, for example, by Newman [4].

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 6. Comparison of the wave profiles with the analytical solution for the case with �=1.45 and
a=0.0041. The damping zone begins at xd=4.32 (solid line: analytical solution; dashed line: numerical

results). Results shown for (a) �=30.33; (b) �=52.00.

Figure 7. Wave history for different amplitudes (L=9.28; �=2.0; recorded at x=1.33).

Figure 8. Wave profiles at �=15T (=2�/�) for different lengths of tank (�=2.0, a=0.043; damping
zone of shorter tank beginning at xd=1.64; solid line: shorter tank L=9.28; dashed line: longer tank

L=25.28).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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To show how the radiation condition works in the above cases with greater steepness, Figure
8 provides a comparison of wave profiles obtained from tanks of different lengths. For this,
the steepness is estimated as ��0.085. It is shown that the results from shorter and longer
tanks are in very good agreement at the centre of the tank, which implies that the reflection
is still not significant in the shorter tank.

2.4. Bichromatic wa�es

The motion of the wave-maker in this case consists of two components and is give by

S(�)= −a1 cos(�1�)−a2 cos(�2�) (6)

where S(�) is the displacement of the wave-maker as before; a1 and a2 are the amplitudes
corresponding to the components of frequency �1 and �2 respectively. The corresponding
velocity then becomes

U(�)=a1�1 sin(�1�)+a2�2 sin(�2�) (7)

The parameters in the radiation condition described above have been chosen for monochro-
matic waves. In order to use Equation (5) for bichromatic waves, the first task is obviously to
choose a suitable frequency that determines �0 and c. A suggestion is given below

�=
��1, a1�a2

�2, a2�a1

(8)

Based on this, several cases with various combinations of frequencies and amplitudes have
been calculated. Figure 9 shows the wave history for one of the cases while Figure 10 illustrates
the corresponding wave profiles along the tank. It can be seen that results corresponding to
tanks of different length are in good agreement.

Figure 9. Wave history recorded at x�3.74 (a1=0.016, �1=1.45; a2=0.2a1, �2=2.03; damping zone
in the shorter tank beginning at xd=4.32; solid line: shorter tank L=14.64; dashed line: longer tank

L=44.64).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 10. Wave profiles at different time instants (a1=0.016, �1=1.45; a2=0.5a1, �2=2.03; damping
zone in the shorter tank beginning at xd=4.32; solid line: shorter tank L=14.64; dashed line: longer

tank L=44.64). Results shown for (a) �=93.16; (b) �=97.49.

2.5. Irregular wa�es and comparison with some experimental results

In irregular waves a rational choice for the frequency � in the radiation condition would seem
to be that corresponding to the maximum value of the wave spectrum. A test case has been
investigated in which the irregular wave is generated by a wave-maker subject to the time
history of displacement obtained by scaling the data in Figure 11 by 	=0.612, as given by
Nestegard [5]. Fourier analysis performed on these data shows that the dimensionless fre-
quency corresponding to the maximum of the wave spectrum is about 1.20, which is chosen for
� in the radiation condition. Figure 12 plots the profiles of wave elevations at different time
steps and demonstrates that the wave has obviously died away in the tank. This implies that
the waves are transmitted through the far end with little reflection, and the effectiveness of the
radiation condition is maintained for this case.

Figure 13 shows the wave histories recorded at x=3.436, together with some experimental
data provided by Nestegard [5] for comparison. A similar comparison is also made in Figure

Figure 11. The displacement of the wave-maker generating irregular wave (set to be at rest after ��58).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308



INTERACTION OF FIXED BODY WITH STEEP WAVE 295

Figure 12. Irregular wave profiles at different time steps.

Figure 13. The history of an irregular wave recorded at x=3.436 for 	=0.612 (solid line: shorter tank;
dashed line: longer tank; damping zone beginning at xd=7.0; + : experimental data from Nestegard [5]).

Figure 14. The history of an irregular wave recorded at x=3.436 for 	=0.749 (solid line: shorter tank;
damping zone beginning at xd=7.0; + : experimental data from Nestegard [5]).

14 for a case where a steeper wave is generated by the wave-maker, its displacement time
history being obtained by scaling the data in Figure 11 by a larger factor (	=0.749). Both
figures show that the numerical results agree well with the experimental data.

It should be noted that the accuracy of the numerical results could be affected by the
frequency of remeshing. For the results from our calculations reported by Nestegard [5], the
agreement with experimental data is not as good as in this paper, as remeshing was applied

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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there at each time step. This led to loss of energy due to numerical damping. Since those results
submitted in 1997, further improvements have been made, by reducing the frequency of
remeshing based on a compromise between avoiding overly distorted meshes and reducing the
loss of energy. More importantly, the recovery technique has been implemented here. These
improvements have led to a better agreement in Figures 13 and 14, as well as in Figure 22 of
the next section.

The calculation has also been undertaken for the case presented by Clauss and Steinhagen
[6]. The tank length is taken as L=49.9 and the frequency used for the radiation condition is
taken as �=0.6. This displacement of the wave-maker and corresponding wave histories at
two different positions are plotted in Figure 15. The numerical results are in excellent
agreement with the experimental results of Clauss and Steinhagen [6], which are represented by
the dashed line. Even at a large distance from the wave-maker, the high waves are well
predicted.

Figure 15. Comparison of wave history with the experimental results of Clauss and Steinhagen [6] (solid
line: numerical; dashed line: experimental).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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3. ONE VERTICAL CYLINDER

The second case considered is the interaction between waves and one vertical cylinder in the
tank (a sketch of the problem is shown in figure 1 of Part 1 [1]). The radiation condition is
imposed at the far end of the tank. It should be noted that the waves transmitted past the
cylinder are three-dimensional. Although the damping zone may also be applicable for
three-dimensional waves, the Sommerfeld condition implemented is suitable for two-
dimensional waves as the phase velocity of the wave and the moving velocity of the truncated
boundary are assumed to be constant across the tank. Tests have shown that the non-
uniformity of these parameters does not affect the results presented below (see Reference [7]
for details).

Meshes used in the simulation are similar to, although finer than, that in Figure 1, and in
the subdomain around the cylinder, the two vertical planes are now radial and circumferential.
The plan form of a typical mesh is shown in Figure 16.

Figure 17 gives the time history of the force acting on the cylinder in the x-direction, when
it is subjected to monochromatic waves generated at the frequency �=2.0 and three different
amplitudes. The non-dimensionalized force is divided by the term R0

2a. Here the radius of the
cylinder is R0=0.1416 while the tank width, B, is 0.62. It can be seen that the non-linear effect
is visible at large amplitude, i.e. the crest is larger than the trough in the force history when

Figure 16. Mesh around a cylinder.

Figure 17. Forces for different amplitudes of the wave-maker (R0=0.1416, B=0.62, Lwc=7.0, Lcd=
5.0, �=2.0; f=Fx/R0

2a).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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the wave is steeper. In addition, the transient period of the force history corresponding to the
steeper wave becomes shorter. This implies that the steeper wave travels faster, reflecting the
amplitude dispersion due to non-linearity, as discussed in Section 2.3. To further illustrate the
non-linear behaviour of the wave force, Fourier analysis of the time history of the force
has been performed over the near-steady state range shown in Figure 17. The non-linear
contribution is obtained by subtracting the first harmonic component from the total force.
Figure 18 gives the estimated non-linear contribution, fh, as well as the corresponding total
force for the three cases given in Figure 17 plotted over the range 36���49. These figures
suggest that the non-linear contributions become more important with increase of the
amplitude of the wave-maker. Further work is required to extract more detailed information
about the non-linear behaviour.

Figure 18. Non-linear contributions to the force obtained by Fourier analysis (R0=0.1416, B=0.62,
Lwc=7.0, Lcd=5.0, �=2.0; f=Fx/R0

2a).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308



INTERACTION OF FIXED BODY WITH STEEP WAVE 299

The corresponding run-up on the front side of the cylinder is shown in Figure 19. The
run-up profiles around the cylinder at different time steps are illustrated in Figure 20 for the
cases with a=0.01 and a=0.043. To demonstrate the behaviour of the profiles in three
dimensions, some ‘snapshots’ of the free surface elevation around the cylinder are presented in
Figure 21. Very different behaviours at the different amplitudes are demonstrated in these
figures. In particular, in Figure 20(b) and Figure 21, quite steep wave profiles appear, which
are more or less similar to the bores in shallow water waves. Stansberg [8] provided some

Figure 19. The time history of wave run-up on the front side of the cylinder surface for different
amplitudes of the wave-maker (R0=0.1416, B=0.62, Lwc=7.0, Lcd=5.0, �=2.0).

Figure 20. Wave profiles on the waterline of the cylinder at different time steps (�=2.0).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 21. Snapshots of wave profiles around the cylinder (�=2.0 and a=0.043). Label for x-axis:
−0.6, 0, 0.6; for y-axis: −0.31, 0, 0.31; for vertical axis: −0.25, 0, 0.25.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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figures showing the local behaviour as a wave passes a cylinder, based on this experimental data.
The wave patterns in his figures are very similar to those at �=39.286 and �=39.914 in Figure
20(b). Krokstad and Stansberg [9] also reported observing some bore-like waves (named
‘hydraulic jumps’ in their work) around the cylinder during their experiments. Precise comparison
with their work is difficult since the information they gave is not sufficient for us to generate
identical waves. Nevertheless, there is a considerable degree of similarity between our numerical
simulation and their experimental results.

The interaction between one cylinder and the two irregular waves shown in Figures 12 and
14 has been investigated. The cylinder is the same as above, but the parameters for the tank
are now taken as B=1.119, Lwc�13.44 and Lcd�8.56 respectively. The numerical results are
compared with the experimental measurements for the force in the x-direction in Figure 22, where
the non-dimensionalized force is divided by R0

3 to be consistent with that in Nestegard [5]. It
can be seen that the agreement is quite good.

4. TWO VERTICAL CYLINDERS

We now consider two vertical circular cylinders in the tank with their centres on a line parallel
to the direction of wave propagation. The problem can be considered as equivalent to
four-cylinders in head seas, if the symmetry plane is taken as one of the sidewalls of the tank.
This two-cylinder problem is, therefore, of considerable practical interest. The main difference
between the problems of one and two cylinders is that in the latter case, one cylinder is in the
diffracted wave field of the other. There have been several published linear analyses of the
multiple scattering phenomena (e.g. Reference [10]). The second-order problem, including the
behaviour of the free surface near the cylinders, has recently been analysed by Malenica et al.
[11]. However, there are no published results for multiple cylinders based on the fully non-linear
theory.

The linearized analytical solution for multiple cylinders in the open sea has been presented
by McIver and Evans [10] and by Spring and Monkmeyer [12]. In particular, the latter paper

Figure 22. Forces acting on a cylinder subjected to irregular waves (R0=0.1416, B=1.119, Lwc�13.44,
Lcd�8.56; + : experimental data from Nestegard [5], f=Fx/R0

3).
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gave various results for two cylinders. That solution is used here for comparison with our
numerical results. To do so, a Fourier analysis is performed on the time history of the force
from the fully non-linear analysis when it has reached the periodic state, to obtain the first
harmonic component. According to the examples presented by McIver and Evans [10], the
force on the upstream (first) cylinder is clearly affected by the presence of the downstream
(second) cylinder, while the influence of the first cylinder on the second is almost negligible
when kl�2 (where l is the distance between the centres of the cylinders). Therefore, the
following comparison is make for the first cylinder only.

The first harmonic components from the numerical results and the linear analytical solutions
are compared for different values of kl in Figure 23. In this figure, X1=Fx1/Fx is the ratio of
the force (Fx1) in the x-direction on the first cylinder to the same force (Fx) on a single
cylinder. This figure shows that the results agree well with the analytical solution, although
some difference is visible. It should be noticed that the solid line corresponds to the force in
the open sea, and thus some of the differences may result from the sidewall effects of the tank.
A body of work has been devoted to the sidewall effects. One example is the paper by Linton
and McIver [13], who used the multi-pole method and presented analytical results for the force
on two cylinders against different values of kB/2� for 2R0/B=1/12 and 2l/B=0.5. They
carried out some additional calculations and provided us with the results for the case we have
investigated here. These are plotted in Figure 23 as triangles. Our numerical results are
generally closer to the solution of Linton and McIver [13] for the cylinder in the tank than to
the open sea results.

In Figure 24, the time histories of the force f=Fx/R0
2a and moment fm=My/R0

2a on the two
cylinders are illustrated for the case with kl=2. The moment My is taken about the bottom of
each cylinder. It can be seen that the shapes of the curves of the moment history are very
similar to those of the force history. It is also seen that the amplitude of the force and moment
on the first cylinder is slightly larger (about 10 per cent) than that on the second one in this
case. Figure 25 illustrates the passage of the wave past the cylinders for this case of small wave
amplitude (a=0.004).

Figure 23. Comparison of the numerical force on the first cylinder with the analytical solutions
(�=16748, a=0.004, R0=0.1416, B=2.832, two cylinders at the centreline of the tank).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 24. The time history of force and moment on two cylinders (kl=2, �=1.6748, a=0.004,
R0=0.1416, B=2.832): (a) forces ( f=Fx/R0

2a); (b) moments ( fm=My/R0
2a).

Figure 25. Snapshots of the wave profiles around the two cylinders (kl=2, �=1.6748, a=0.004,
R0=0.1416, B=2.832). Label for x-axis: −1.3, 0, 1.3; for y-axis: −1.5, 0, 1.5; for vertical axis: −0.05,

0, 0.05.

We also calculated some cases with similar frequencies but larger amplitudes. One of the
examples corresponds to a=0.035. The time histories of the force and the run-up on the front
sides of the cylinder surfaces for this case are given in Figures 26 and 27. The corresponding
snapshots in one period are shown in Figure 28. From the run-up history and snapshots, it can
be seen that short local waves also appear as in the single cylinder case shown in Figure 21.
In order to illustrate the influence of the interaction between the two cylinders on the local
waves, Figure 29 presents the corresponding wave profiles around a single cylinder. All wave
parameters and tank dimensions for Figures 28 and 29 are identical. These figures clearly show
that the local waves become more apparent due to the presence of the interaction between the
two cylinders. This influence should also be reflected in the force, moment and run-ups. To

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 287–308
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Figure 26. The time history of the forces on two cylinders (kl=2, �=1.6748, a=0.0035, R0=0.1416,
B=1.416).

Figure 27. The time history of the run-up on front side of cylinder surfaces (kl=2, �=1.6748,
a=0.0035, R0=0.1416, B=1.416).

illustrate this, the estimated non-linear components of the force are shown in Figure 30 for the
single cylinder and for the first cylinder in the two-cylinder problem. The results suggest that
the non-linear effects become substantially larger due to the interaction between the cylinders.

Figure 31 illustrates the wave profiles for a case similar to that in Figure 28. Almost all the
parameters are the same in the two figures. The only difference is that the two cylinders in this
figure are closer to the wall at y=B/2, with the distance to the wall from the center of the
cylinders being ly�0.3B, while they are situated at the centre in Figure 28. This figure shows
that the interactions in the off-case are considerably more complex than those evident in
Figure 28. It should also be noted that because the value of ly can be arbitrarily specified; this
case also demonstrates the potential of the presented methodology for dealing with four-legged
platforms in head seas in the tank. In such cases, the centreline of the four-legged structure can
be used as a sidewall, and symmetry used to represent the problem by just two cylinders in the
tank.

5. CONCLUSION

In this paper, which comprises Part 2 of this work, the methodology and the corresponding
numerical procedure described in Part 1, based on a three-dimensional FEM, have been used
to simulate steep waves and their interaction with vertical cylinders. The numerical results have
been compared with those obtained by analytical solutions and experimental data. All have
shown that the numerical calculation can give satisfactory results.
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Figure 28. Snapshots of the wave profiles around two cylinders (kl=2, �=1.6748, a=0.0035, R0=
0.1416, B=1.416). Label for x-axis: −1.3, 0, 1.3; for y-axis: −0.7, 0, 0.7; for vertical axis: −0.2, 0, 0.2.

The damping coefficient that is included in the radiation condition described in Part 1 has
here been optimized by a series of numerical tests. This method of dealing with the radiation
condition has been used in many cases and found to be satisfactory, but our understanding of
the reason for this success is far from complete.

Extensive results have been given, including some cases of two cylinders, which are not
found in the literature so far. The CPU time used in these cases is roughly of the order of 20
h on a 233 MHz workstation with 96 Mb of memory. This shows that the FEM is quite
efficient for dealing with such computationally intensive problem.
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Figure 29. Snapshots of the wave profiles around one cylinder (kl=2, �=1.6748, a=0.0035, R0=
0.1416, B=1.416). Label for x-axis: −0.95, 0, 1.65; for y-axis: −0.7, 0, 0.7; for vertical axis: −0.2, 0,

0.2.

Figure 30. Non-linear contributions to the force acting on the cylinder with or without the interaction
between the cylinders (�=1.6748, a=0.0035, R0=0.1416, B=1416).
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Figure 31. Snapshots of the wave profiles around two cylinders (kl�2.0, ly�0.3B, �=1.6748, a=
0.0035, R0=0.1416, B=1416). Label for x-axis: −1.3, 0, 1.3; for y-axis: −0.7, 0, 0.7; for vertical axis:

−0.2, 0, 0.2.
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